Skip to main content Link Menu Expand (external link) Document Search Copy Copied

Useful References


ATE Techniques

  • Astrakhantsev, N., Fedorenko, D., & Turdakov, D. (2015). Methods for Automatic Term Recognition in Domain-Specific Text Collections: A Survey. Programming and Computer Software, 41(6), 336–349.
  • Banerjee, S., Chakravarthi, B. R., & McCrae, J. P. (2024). Large Language Models for Few-Shot Automatic Term Extraction. In: Natural Language Processing and Information Systems, 137–150. Cham: Springer Nature Switzerland.
  • Di Nunzio, G. M., Marchesin, S., & Silvello, G. (2023). A systematic review of Automatic Term Extraction: What happened in 2022?. Digital Scholarship in the Humanities, 38(Supplement_1), i41-i47.
  • Lang, C., Wachowiak, L., Heinisch, B., & Gromann, D. (2021). Transforming Term Extraction: Transformer-Based Approaches to Multilingual Term Extraction Across Domains. In Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, 3607–3620. Association for Computational Linguistics. https://doi.org/10.18653/v1/2021.findings-acl.316
  • Tran, H. T. H., González-Gallardo, C.-E., Delaunay, J., Doucet, A., & Pollak, S. (2024). Is Prompting What Term Extraction Needs?. In: Text, Speech, and Dialogue, 17–29. Cham: Springer Nature Switzerland. ISBN: 978-3-031-70563-2.

ATE Corpora

  • Arcan, M., Turchi, M., Topelli, S., & Buitelaar, P. (2014). Enhancing Statistical Machine Translation with Bilingual Terminology in a CAT Environment. In Proceedings of the 11th Conference of the Association for Machine Translation in the Americas: MT Researchers Track, 54–68. Association for Machine Translation in the Americas.
  • Cirillo, N., Vellutino, D., Nicoletti, D., Sabarese, E., & Rubino, B. (2025, marzo). ItaIst GRU. https://doi.org/10.5281/zenodo.15173712
  • Kim, J.D., Ohta, T., Tateisi, Y., & Tsujii, J. (2003). GENIA corpus - A semantically annotated corpus for bio-text mining. In: In Bioinformatics. 19. Oxford University Press. https://doi.org/10.1093/bioinformatics/btg1023
  • Qasemizadeh, B., & Schumann, A.-K. (2016). The ACL RD-TEC 2.0: A Language Resource for Evaluating Term Extraction and Entity Recognition Methods. In Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16), 1862–1868. European Language Resources Association (ELRA).
  • Rigouts Terryn, A., Hoste, V., & Lefever, E.(2020a). In no uncertain terms: a dataset for monolingual and multilingual automatic term extraction from comparable corpora. Language Resources and Evaluation, 54, 385–418. https://doi.org/10.1007/s10579-019-09453-9
  • Scansani, R., Bentivogli, L., Bernardini, S., & Ferraresi, A. (2019). MAGMATic: A Multi-domain Academic Gold Standard with Manual Annotation of Terminology for Machine Translation Evaluation. In Proceedings of Machine Translation Summit XVII: Research Track, 78-86. European Association for Machine Translation.
  • Vellutino, D., & Cirillo, N. (2024). Corpus «itaist»: Note per lo sviluppo di una risorsa linguistica per lo studio dell’italiano istituzionale per il diritto di accesso civico. Italiano LinguaDue, 16(1), 238–250.

Evaluation metrics and Shared Tasks

  • Amigó, Enrique, Julio Gonzalo, Javier Artiles, and Felisa Verdejo. (2009). A Comparison of Extrinsic Clustering Evaluation Metrics Based on Formal Constraints. Information Retrieval 12 (4): 461–86.
  • Bagga, A., & Baldwin, B. (1998). Entity-based cross-document coreferencing using the vector space model. In Proceedings of the 36th Annual Meeting of the Association for Computational Linguistics and the 17th International Conference on Computational Linguistics (COLING-ACL’98) (pp. 79–85). Montreal.
  • Di Nunzio, G. M., Vezzani, F., Bonato, V., Azarbonyad, H., Kamps, j. & Ermakova L. (2024). Overview of the CLEF 2024 SimpleText Task 2: Identify and Explain Difficult Concepts. In Working Notes of the Conference and Labs of the Evaluation Forum (CLEF 2024), Grenoble, France. CEUR-WS.
  • Hazem, A., Bouhandi, M., Boudin, F., & Daille, B. (2020). TermEval 2020: TALN-LS2N System for Automatic Term Extraction. In: 6th International Workshop on Computational Terminology (COMPUTERM 2020).
  • Rigouts Terryn, A., Hoste, V., Drouin, P. & Lefever, E. (2020b). TermEval 2020: Shared Task on Automatic Term Extraction Using the Annotated Corpora for Term Extraction Research (ACTER) Dataset. In Proceedings of the 6th International Workshop on Computational Terminology, 85–94, Marseille, France. European Language Resources Association.
  • Verborgh, R., Röder, M., Usbeck, R., & Ngonga Ngomo, A.-C. (2018). GERBIL – Benchmarking Named Entity Recognition and Linking Consistently. Semantic Web, 9(5), 605–625. https://doi.org/10.3233/SW-170286